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Abstract

A key obstacle hampering ficlding of Al planuing applications is the
considerable €XPense of developing, verifying, updatin g, and maintaining
the planming knowledge base (KB). Planning systeins noust be able to
compare fayvorably inter ms of so ftwa re lifecycle costs to othe r means of
automation such as sa1 Pt o1 1 nle-b ased expertsystems, Consequently, in
orderto field real systems, planning practitioners must be able to prov ide:
1. tools o allow domain experts 1( 1 create and debug their own planning,
kunowledge bases; 2. tools for software verificat jon, validation, and test -
ing;and 3. toolsto facilitate updates andinaintenance of the planning,
knowledge bas e, This pap ar hegins by describing, a planning app lication
of automat ed finage processing and our over alt approach 1o kn owledge
acqui sition for this application. This p: @ then describes two types of
tools for plauning knowledge hase development: gtatic KI3 analysis tech -
niques Lo detect certain classes of syntactic errorsin a planning knowledge
base;and completion analysis techniques, to interactively debug the plat -
nmgknowledgebase. We describe these knowledge development tools and
describe empirical results documnenting the usefulness of these tools.

1. introduction

A key bottleneck inapplying Al planuing techtigues to arcal-world problem is
the amount of effort required to const ruct, debug, verily, and updat e (maintain)
the planming, knowledge hase. In particular, planning syst cins must be able to
comparc favorablyintermsof software lifecycle costs to othenmeans of automa-
tionsuch as scriptsor rule-Imscd expertsystems. Ary hmportant component o




reducing sucly costs is to provide a good environment for developing, planning,
knowledge bases, Despite this situation, relat ively lit tle eflort has been devoted
to developing an integrated set of {ools to facilitate constructing, debugging,
verifying, and updat ing specialized ku owledge structures used by planming, sys-
tems,

While considerable rescarch has focused on knowledge acquisition systemns
for rule-based expertsystems[6], and object-oricnted/inheritance knowledge
bases with proceduves and methods [9], little work has foeused 011 knowledge
acquisition for specialized planniug 1 epresentations. Notable except ions to this
statemment are [7] which uses induct ive lear ning, capabilities and a simulator
to refine planning operators and [19] which uses expert traces 1o learn and  a
simulator to refine plannming operators. However, inmany cases a simulation ca-
pability is not available. Inthese sit uations t he user needs assistance in causally
tracing crrors and debugging from a single example. This assistance is sorely
needed to enable domain expertsto vrite and debug domain theories without
relying 011 Alpcople. Further 1)1017 () planning knowledge base maintenanceis
often overlooked. Such tools are also invaluable in tracking smaller bugs, veri-
fying K13 coverage 1, and updating the XI3 as the domain changes. While these
100ls can dyaw much fromn causal tracking, techniques v sed in rule-based systemns
[6], there are several aspccts of planning systems which differentiate them from
rule-based systems - their specialized representations and thel r temporal rea-
soning, capabilitics. T'wo specialized 1 (] wesentations for planming are prevalent
- task reduction rules and planuing operators. These representationis as well
as the most cornmon consty aints {or dering, and codesignation const vaints) have
evolved so that specialized reasoning algorithing must be adapted to support
debugging,.

Many types of knowledge encoding errors can occur:  incorrectly defined
preconditions, incorrectly defi ned eflects, and incor rect variable specificat ions.
Invariably the end result is a mismatch bhetween the planners model of the
legality of a plan and the model dictated by the domain (o1 dommain expert).
Thus, the end symptoms of a knowledge base (1] (' canbe broadly classified
into two categorics.

Incorrect Plan Gencration: This oceurs when the planuer is presented  a
problem and generates a plan which does not achieve t he goals inthe current
problem cor itext. In our experience, the carrent problem and faulty solution
can focus attention in debuggi ng the flaw in the knowledge base. By using the
faulty 1da)) to direct thedebugging process, the user can often focus on the
incorrect link in the plan (faulty prot ection oy achicvement ) - allowing for rapid
debugging.

Failure to Generate a Plan: This occwr s when the planner is presented with a
solvable problem, but the planner is unable to {ind a solution. Inour exp crien ce

Wor work inverifying rule- based systemns - sce [14]. Forwork anrule base refincment using
training examples (the analogue of a simulator for planuing KB refincient) see [107],
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this type of failure is far moredifficultto debug,. This is hecause the user does
not have a particular plan to use t () focus 1 hie debugging process. Thus, often
a user would manually write down a valid plan based on their ineutal model
of the domain, and then trace through the steps of the plan to verify (ha't
the plan could be constructed. 1 3ccause our experience has heen that detect ing,
anddcbugg ing failure-to- gencrate-a-plan ci ses has beenmore diffic ult, our work
focuses on: 1. verifying, that a domain theo y can solve all solvable problems;
and 2. facilitating debugg, ing, of cascs wher e t he domain theory doces not allow
solution of a problem decined solvable by the domain expert.

This PAPCY describes two types of tools™ developed to assist indeveloping
planming knowledge bases - stafic analysis tools and completion analysis tools.
Static analysis tools analyze the domain knowledge rules and o])(raters to sce
i f certain goals can or canmot be infared. However, because of computational
tractability issues, thesechiccks mustbelimited. St atic analysis t ools are useful
indetecting situations inwhich a faulty knowledge base causes a to]-level goal
or operat or precondition to be unachicvable - frequently due to omission of an
O] yerator effect or atypograp)Liical error.

Completion analysis tools™ operate al planning time and allow the Planner
10 comiplete plans which can achieve all but a few focused subgoals or to]-level
goals. Completion analysis tools are useful in cases whar ¢ a faulty knowledge
hase does not allow a Planto be construet .od fora 1)17°01)1(°111 thatthe domain
expert believes is solvable. Inthe case wher ¢ the completion analysis tool allows
aplanto beformed 1) ) assuming goals truie, the domain expert can then be
focused on these goals as preventing, the plan from being generated.

The static analysis and completion analysis tools have been developed in re-
sponsc to our experiences in developing and 1 efining the kno wlaedge base for t he
Multimission VICAR Planner (MVP) [1, 2] systemn, which antomatically gen -
erates VICAR image processing seripts from specifications of image processing
goals. The MVT system was initially used inDeceinber 1993, and has beernin
routine use since May 1994. The t ()()1s describedinthis paper were driven by
our considerable eflorts in knowledge hase development, debugging, and updat es
1o t he modest sized knowledge base for MV,

The remainder of this paper is organized as fol lows. Scection 2 outlines the
two planning representations we suppo b task 1 educt ion rules and operators,
Section 2 also briefly describes now these rept esentations are used in planning,.
Section 3 deseribes staticanalysisrules for assist ing in planning KB verification
and developient. Scetion 4 describes completion analysis 1 ules {or assisting in
planmming K13 devcelopment.

2 V1 CAR Image Processing

We desceribe the static and completion analysis tools within the context of the
Multimission VICAR Planner system, aficlded Al planning systein which auto-




mates cortain types of hinage processing 2. MV uses both task reduction and
operator- based methods in planming. However, the two paradigins are separate,
inthat MVP first perforins task reduction (also called hicrarchical task network
or II'I'N plaiming) and then perforins oper ator-based planning,. All of the task
reduction occurs at the higher conceptual level and the operator-based methods
at thie lower level 3. Consequar 1t ly, MVPuses two rnain t ypes of knowledge to
construct hinage processing plans (scripts):

. decomposition rules - to speciy how problems are 10 be (1 (0111 ]) »sed into
lower level subproblen Is; and

. operators - to specify how VI CAR prograns can be used to achieve lower
level image processing, goals (Produced hy 1 abi we), These also speeily
how VICAR programs interact.

These two types of knowledge st ruct ures are described in further det ail helow.

A key aspect of MVI “s integration of t ask reduction and operat or- based
planning is that first taskreduction is ])O].r()““("da”l(\]l()])(',]"(ll‘()l"l)EiS(‘,(]])]'(lIl]lillg.
Because of the order inwhich these are performed, these two types of knowledge
can he checked separately.

2.1 Task ReductionPlanming in N1V ]’

MVDP uses a task reduction app roach to planning. In atask reduction approa ch,
reduction rules dictate how inplan-space planming, one plan call belegally
transformed into another Plan. The planner then scarches the Plan space defined
by 1 hese reductions. Syntactically, a task 1 eduction rule is of the form:

LUS RS

GI = initial goal set/actions GR:= reduced goal set/actions
CO = constraints => Cf = constraints

C2 = context N = notes on decomposition

This rule states that a set of goals or actions Glcanbereduced to a new set
of goals or actions GR if theset of constraints (X) is satisfied inthecurrent
plan and the context C2 is satisfied in the current plan provided the additional
constraints C] arc added to thie plari. C0O and Clare constraint forms which
specify conjuncts of constraints, cach of whichmay be a codesignation constraint
on variables app caring in the plan, an ordering, constraint on actions or goal

2We only briefly deseril e the MV application due 1o space constraints,  For fur ther
information on this application arca, MVI* architecture, and knowle dge representation sec
1,2, 3.
[ 3]\/]171)ﬁmt uses task r(-(lucl‘i(m[]Q]Mznming techniques io performhigh level strategic clas-
sification and decomposition of the problein the nuses traditio nal operator-hased [16] planming
par[]a(ligms to plar i at the Jowe level

wore recently developed plannaer [4, 1) completely inteprates these two planning

paradigims. While natural extensions of static and completion an alysis to th is integrated
planning approach exist, we have notas of yet exploved such possibilities,




achievemnents in the plan, a not-present constraint (which is satisfied only if
the activity or goal specified does not appear in t he plan and never appeared
in the derivation of the plan), a p resent constraint (which is satisfied only if
the activity or goal specified (lid appear in t he planor derivation of the plan),
or a protect ion constraint (which specifies that a goal or set of goals cannot
be invalidated during a specified ter nporal ingerval. Skeletal planning[l1 1] is a
techmique in which a probl e is identified as one of a general class of problem.
This classification is then used to choose a particular solution method. Skeletal
planuing in MVP is implemented in by encoding decomposition rules which
allow for classification and initialdecomposition of aset of goals corresponding,
to a VI CAR p roblem class. The LHS of a skeletal dee omposition rule in MVP
correspouds to a set of condi tions specifying a problent class, and the RHS
specifies an initial p roblem decomposition for that prohlem class,

MVP also uses decomnposition rules to iinplement hierarchical planning. Hi-
crarchical planning [1 8] is anappi-oach t () planning wlhiere abstract goals or pro-
cedures arce incrementally refined into more and more specific goals or procedur es
as dictated by goal or procedure de compositions. MV uses this apyoroach of
hierarchical decomposition to refine the initi al skeletal planinto a more specific
plaitspecialized based ()] | thespecific (=111(J11 goals and situation. This allows
the overal] pr-oblem deco mposition to be influenced by factors sucti as the pres-
ence or absence of certain iimage calibration {iles o1 the type of instrument and
spacectaftusedtore (01 theimage. For example, geomnet ric correction uses a
model of the t arget object to correct for variable distance from the instrument
to the target. Vor VOYAGER images, geometric correction is pei formed as Part
of the local] correction process, as geometric distortion is significant enough to
require immediate correction 1)(*fore other image processing, steps can be per-
formed. However, for GAY 1 1L1sQimages, geometiic correction is postponed until
the registration step, where it can he perforined more efliciently.

This decomprosition-based approach t () skelet al and hicrarchical planning
in NIV]" hassceveral strengths. First | the decomposition rules very naturally
reporresent the mannmer in which the analysts attack t he procedure gencration
problern. Thus, it was a rclat ively straightfor ward process for t he analysts to
articulate and accept classification and dec amposit ionrules for e subarcas
which we have implemented thu s far. Sccond, the notes from thie decomposition
1'111(’ S usedto de composcetlie problemcanhbe 11 ¢ (1 toanunotate the resulting
Plan (o make the Outpul plans 11101° (" understandable to the analysts. Third,
relatively few problen decomposition 1ules are casily able to cover a wide ranige
of problems and decompose them into nuch sialler subproblems.

. . (1
2.2 Opcrator-b ased 1 lanning in N|V]
7 g B . - .
MV1 representslowerlevelproceduralinforinationinteins of classical platming

operators. These are typical classical planning opaators wit I preconditions,
cffects, conditional cffects, universal and existential guantification allowed, and



with codesignation constraints allowed t () appCarinoperat or preconditions and
effect conditional preconditions. For reasons of space constraints the operator
representation is only briefly described here. (for a good descriptionof a classical
planning operator representat ion similar t o owrs see [1 G]). Thus, an operator
hasa list of parameter variables, a conjunctive set. of preconditions, and for cach
effect (which is a conjunct) there is a (possibly null) set. of preconditions.

Opcrator
Parameciers: variable?
P’reconditions: P’r c¢c = 1'10]1*
Fflects: [iflecti = 1rop* wher y Cpreci - Prop*]?

The above operator has the scinantics that it, can only be executed in a state in
which all of the preconditions 1 ‘1 ¢c are true. And when exccuted, for cach effect
set, if all of the conditional preconditions Cpreciare t rucint heiuputst at ¢, the
cflect Fflecti occurs and all of the effects are t ruce in the output Sg aje.

A description of the GA] .SOS operator is shown below.

opar ator G Al /SOS
:paramcters Zinfile 7ubwe Ycale
;preconditions
the project of 7infile must be galileo
the data in ?infile nust be raw data values
eflects
rescaus are not inta ct for 7infile
the data in Zinfile is not raw data vidues
missing lines are not filled in for Zinfile
?infile is radiometrically corrected
the ninage format for 7infile is halfword
?infile has blemishes- emoved
if (UBWC option sclected) then ?infile is uneven bit wi. correc ted
if (CALC optionselected) then ?infile has entropy values calculated

2.3 An Overall App roach to K nowledge Acquisition, Val-
idation, and Refinement for MVP

1 Juring development of t he MV knowledge base, we used an iterative refine-
ment model in building the knowledge base. We began by eliciting rep resenta-
tive problem classes and used t licse t () divect the knowledge clicitation - botliin
terms of problem classes for the H'I'N rules andinterins of the causal structure
underlying the operators. Concurrent with the development of this knowledge
base, we at tempted to clicit from expert analysts, declarative deseriptions of the
coverage of cach of these problemn classes - interning of the legal combinations of
goals and of initial states allowable.

When this knowledge base was relatively Ss1 able, it was tested against a
holdback set of problems not used during, the original clicitation process. This
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led to another 170111)(1 of refinciment Of the knowledge base and problein class
deseriptions,

In the operational version of MV, this definition of” legal problem classes is
key. Before any problem is submitted to the planmer from the interface, it is first
checked against these problem class constraints. Inthe evenit that the submit ted
request does not pass the constraints, it is notsubinitted to the planner - rather
the user is notified that the probl em is not considered a valid request. If the
user believes otherwise, they can submit a bug 1 eport at this time.

If the problem is considered a valid one, then if the planner is correct and
sound, thenthe planner and knowledge base should he able to solve the 1)1°01)101)
correctly. While the MVP plannmer is not complete @it cannotbackt rack across
different decompositions in 1-esponse 1o failur es in operator- based planning), in
actual usage, wehavenot yet encountered a Problentin wliicl, this was the cause
of a planner failure. Consequently, wlhien the planner (¢ aid K13 ) are unable to
solve a problein (e.g., the plauner canmot {ind a solution cither due to dead-ends
in the scarch space or exceeding resource botinds), a KB bug, is assumed and a
bug report is automatically submitted. This bug report includes the requested
goals, initial state, andimage files are logged. Similarly, if the planner generates
an incorrect plan, a bug report can be filed (manually) by t he user. Figur e 1
below graphically illustrates the acquisition and maintenance flows as described.

Development Operations

Cases
‘ \Roqm‘s(
Initial KB
o ™~ l Conshaint Check
Verification / \
l AN Constiaints ’

Refined KB Manual Bug 1eport Planner

(validd reguest not
allowed) / \
Holdback Cases

Automatic valid PDF
~ Test Bug, Report
(Planner
Release Fails -

cmail Jog)

Figure 1 Initial Acquisition and Maiutenance Processes for MVE Planning
Knowledge 11:1s(!

2.4 1 )iflerent Tool Types and Representat jons

Inorderto facilitate this key 1)10( '(’Ss ol know ledge acquisition and refinemnent
we have been developing aset. of knowledge- base editing and analysis tools.”
These tools can 1) categorized into two gencral ty pes: (1) st stir knowledge
base analysis tools; and (2) completionanalysis t ()()1s. 1 3ecause MV] uses two




types of knowledge: decompositionyules and o]x’late] definitions, cachi of these
tools can be used  with cach of these representations. Thus there are four types
of taols:

. static rule analysis tools;

. static operator analysis Lools;

. completion rule analysis tools; and
. completionoperator analysis tools. ”

For cachtype of 1001,” it is possible to perforinthe analysis using propositional
or full predicate checking. In propositional analysis, all actions and goals are
considered optimistically only for t he predicate or goalname. Yor example, when
cousidering whether an operat or could achicve a specific fact, " (radiomet rically-
corrected filel ), optlimistic t1 catmentimecans t hat any effect or initial stat ¢ fact
with the predicate "radior netrically- correct d can be used. When considering
whether an effect |, 7 (radiometrically-corrected ?filel )*, delet (s a prot ected fact
“ (radiometrically-corrected Mile2)”, one presunies that the argum ent s to thie
predicate can be resolved such that the conflict. dots not occur. Therefore the
effect is not considered to delete the fact. The propositional analysis is used as
afast checking componenttocatchsimple (1°1°01'S whendebugging a knowledge
base. Thefull static analysis is useful but restricted to more hatch-like analysis
due to its computational expense.

2.5 ] ’roblemm Spaces for Knowledge A nalysis

11 our knowledge base developient and refinement fi amn ework, t he knowle dge
basc is divided intoa set of Problemgpaces. A problemgpace consists of a set of
tllowable sets of input s andgroundings. Int he casce of t askreduction, conceptu-
ally the planner is reducing a set of abstract activities intomorespecificactivities
(although sometimes these specific activities can be mapped | Hence, in t ask re-
duction, the Inputs are non-operational goals, proundings ar ¢ operational goals,
and the problem space conresponds Lo a class of” non-oper ational goal sets which
can be reduced into operational goals. Inthe case of operat or-based planning,
the planmer is considering which now to achieve goal state requirements using,
a particular set of actions from certain init ialst ates. In this case theproblam
space corresponds to a class of goal st ates whiclican e achieved from a general
class of initial states. 1 both the task reduction and operator-hased cises, the
inputs are specified in terms of logical coustiaints over goals and groundings are
specified interms of a list of predicates which canbe presumed t rue/operational.

These problernspaces represent a set. of contexts in which the dec omposition
pla nner or operator planuey is attempting to solve a gener al class of problems.
1Yecomposing the overall problem solving processinto t hese problem spaces and
analyzing cach in isolati on dramatically reduces the complexity of the anal ysis




Figure 2: Problemn Space Information

Problem Spuace 4/ opcarators goals typ. scarch
local correction 15 K 4¢
automatlic navigation 20 4 150
manual navigation 24 4 300
photometric correction 5 2 GO
registration 13 H 110
mosaicking 4 3 320
touch ups 10 3 320

process. O f course, this introduces the possibility that the knowledge hase
analysis is flawed ductoapoor problem dec omposition. Unfortunately, we
know Of no other way around this problan. While the tools we describe are of
assistance in analyzing the impact of the problem space sty ucture they (k) not
directly assist, inthedefinition of the problemspaces - which is a direct burden
011 theuser.

Within a single problem space only one of the 1 I'I'N and op eral or-hased
planmer is being used. Hence in this case the system performing the analysis
is complete andcorrectso that inahility t o solve a P oblem is interpreted as a
flaw inthe knowledge Dasce.

1 3clow in Iigure ? we list the p roblem spaces used in the current MVP
knowledge hase.  For cach problem space we describe tile number Of relevant
planning operators, the munber of top-level input goals, and the typical number
of plans scarched in the problem space.

3 Static Analysis Tools

3.1 Static Analysis Tools for Task Reduction Rules

Static analysis tools analyze the knowledge hase to deterinine if pre-specified
p roblem-classes are solvable. The st at ic analysis t ecliniques ¢ an be used in two
ways: 1. fast 1un-time checking using propositional analysis {(called proposi-
tional static rule analysis); and 2. ofl-line knowl edge-base analysis to verify
domain coverage (call ed full st atic rule analysis).

In the case of static rule analysis, the analysis process is to verify that all
legal sets of input goals canbe reduced into operational goals /facts /tasks. The
set of allowablecinput goals is formally specified interms of logical constraints
on a scl of goals produced hy thie interface. Figure 3 describes the static rule
analysis algoritlnn. Pelow we show a sinplified PY oblem space description for
the navigat ion problem space, and use this t o illustrat e static rule analysis,
Input goals are all combinations of:

(attempt-to-FARIENC ?files) (automatch ?files)
{(manmatch 7files) (curve-verify 7files)
9




Table 1: Propositi onal vs. Iull Constraint Handling,
Constraint type | Propositional Case | Full Case

codesignation ignored tracked
not-pres 111 ipnored tracked
present. propositional tracked

~ ordering tracked tracked
protection ignorced tracked

(display-automatch-residual-crror ?files) (display-manmatch-residual-crror ?files)
(update-archival-sedr ?files)

Subject 1o the constraint that:

= ((attempl-to-FARENC files 7files) and (automateh 7 files))

~(curve-verify ?files) or (at tempt-to- FARENC 7 files)

“(display-autom ateh -resid yal-ciror ?filvs)()1‘(illl1,()11|le('1|’.’filvs)
-(display-manmmatch-residual-eri01 “files)or (inanniatel 1 7 files)

Generally, the allowable sets of inputgoals {(1¢ of” theform” al] combinations of
these b goals except that goald and goal3 ar ¢ incompalt ible, and that every time
goal 2 is sclected goal Tmust have parameter X and S() 011.

Theoulput legal set of goals/facts/tasks are definedintertns of a set of
operational predicates. For example, inthe relative navigation example 11 sed
above has the operational predicates: construct- om-matrix, and display-om-
crror.

This means that any go:/activit y/fact produced using one of these pred-
icates is considered achieved. Static rule analysi s ru ns the rules on these al-
lowable combinations and verifies that t he decomposi tion 1 ules cover the con -
binations (1his corresponds to exhaustive testing of the task reduction rules).
A's described in Section 2.1, {hercare severaltypes of constraints used in the
task reduction rules. Some of t hese constraints (10 not make sense for a propo-
sitional analysis; how constraints are handled in the propositional analysis is
shown b clow.

The principal diflerence  between  the propositional and non-propositional
cases is that whien predicates are transformed t () t he propositional case, con-
straint resolution optimistically presumes variable assignments will remove con-
flicts. For example, cousider the plan and reduction rules shown helow.

Plani: activities: (fro) ¢216) (bar ¢216) consiraints:
Plan2: activities: (foo ¢216) (bar ¢211) constraints:
Reduction Rulel: if present: (bar 7a) not-pr esent: (foo 7 )
Reduction Rule2: if present: (har 7a) (foo 7a)

In the propositional case, both rulel and rule2 apply to both plandand plan2.
Inthe full case, rule 1 does notapply cither planlor plan2. In the full case rule2
applics to Pland hut does not apply to plan2. Note that in the propositional case,
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StaticRuleA nalyze(inpu t-goals, operational-goals, j ules)
initialize Q = (goals: input-goals, constraints: {})
Select, aplan1’ from Q

for cach plan 1 produced by reducing a goalin 17 using, a

task reduction rule w. con strain ts as hel ow
11’ 1’ contains only oparational goals return SUCCESS
ELSE add 1« to Q and continue

Figure 3: Static Rule Analysis Algorithin

inordertopresurne that variables resolve optimistically, the analysis procedure
need not compute all possible hindings. Rathea, 11¢ analysisprocedureresolves
present constraints by presuming matching if the predicate matches and by
ignoring, not- present constraints (and otl ) s as indicated above). To further
illustrate, consider the following example from the MV domain. The input
goals, relevant decompositionrules, and operationalpredicatesare shown I W1OW.,
Input Goals: (automatch ?files) (manmatch ? files) (display-mat imatcli-error 7files)
1)ecomposition Rules:

Rulel 1.YS (automateh 1) (inammatch ?{1)

RHS (const ruct-om-ma trix ?f1 auto-tar i-refined)

Rule2 LIS (display-man patch-crror 72) p resent (automatch 72) (mamnat ch 712)
RIS (display-om-crror 72 autoanan-refined)

Operational 1 ’redicates: construct-om-maty ix, display-om-ciror

In both the propositional and full static rule analysis cases 1)0111 rules would
apply in the analysis. Thus, both analyses would indicate that the input goals
can hereduccd into operational facts /act ivit ics.

3.2 Static Analysis ‘] 'OD]s for Operator-based 1 °lanning

The static ana lysis techniques can also he applied t o the MVI “s operator-hased
planner component. This is accomplished by generalizing, the planming algo-
rithm, Again, as with the static rule analysis, the static operator analysis is
considering a general class of problems defined 1)y a problamspace. As witlithe
static rule analysis, a problam space definies anallowable set of goals and a sct
of operational predicates which ar ¢ assumed troe in the mitial state.

In the propositional static operator analysis case, in order to treat the do-
main theory optimistically, we must assume that all protection interactions can
be resolved by variable assigiinents. 1 3Ccause of the ab sence of protection con -
straints, the propositional operator st alit analysiscorresponds t () {he proposi-
tional rule-Ims(’(1 static analysis. Atioperator with preconditions 1° and effects
1 maps onto a rule with LS 17 and RUS 1. Conditional effects extend analo-
gously.
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The non-propositional static analysis case is handled by modifying a star
dard opcerator- based planner. The planner is changed by adding aniachievement
operation corresponding Lo presuing any operational fact is true in the initial
state. We are carrently investigating using, more sophistica ted static analysis
techmigues to detect more subtle cases where goals arcunachievable[8, 1 7], The
full (e.g. non-proposi tional) operator st at ic analysis algorithin is shown below
in Figure 4. The? on Sk1) 3 indicates that this is the key modification to a
standard operator-hased planning algorithtn t () perform staticoperator analysis.

StaticOperator Analyzel‘ull(input, operational, operators)
initialize plan quene Q to (goals: input, constraints: {})
sclect a plan P from Q
for cach plan P’ produced by achicving a goal G using the following methods:
1. use an existing operator in the plan to achieve G
2. add a new operator to the plan to achieve G
3.4 0f the goal is operational assume it true in the initial state
resolve conflicts in 177 (protections)
1I* P’ has no unresolved conflicts and no unachieved goals
THEN return SUCCESS
ELSE add P’ 1o Q and continue

Figure 4: Static Operat or Analysis Algorithim

Figure 5 shows the subgoal tree  generated by perfor ming, full static analysis
on the operator planmer problem space dc fined by: Input. Goals: (compute-
om-matrix “fl amnatch) (up date-an chival-sedr ?fl manmatcl) and Operational
1’redicates:project, initial-predict-source.

4 Completion A nalysis Tools

The sccond type of knowledge base development tool used in MVEP is the com-
pletion analysis tool. In many cases, a knowledge engineer will construct. a
domain specific.atioll for a particular VICAR problem, st it out on known files
and goal combinations. T'wo possible out comes will occur. I'irst, it is possible
that the domain specificat ion will produce an invalid solut ion. Second, it i s
possible that the planner will he unable to construet a solution for a problem
that theexpertbelieves is solvable.

Inthe case that the PlJanner constr ucts an invalid solution, the knowledge
engineer can use the inconsistent part of the solution to indicate the flawed
portion of the domain theory. For examiple, supposce that the planner J)1)(2120(s
a plan consisting of steps ABCD, but the exper t helieves that the correct plan
consists of steps ABBCSD. In this case the knowledge engineer can focus on the
underlying reason that S is necessary. S 11]218( have hadsome )@@r)ose inthe
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Iligure 5: Subgoal Graph Indicating Static Operator Analysis for Navigation
Goals

plan. lmay be needed to achicve a to p-level goal G m a precondition 1¢ of A
13,0r C. Alternatively, if the ordering of operators or variable assigninents is not
valid in the produced Play ), the knowledge engineer can focus on the protection
or other constraint which should have heen enfor ced.

The second possibility is that the domain specification fails to allow the de-
sired solution. For example, 1he expert helieves that the plan Al 3C1) should
achicve the goals, but the planner fails i o find any plan to achieve the goals,
In this case, detecting the flawed part of the knowledge bhase is more difficult,
because it is difficult to determine which part of the domain specification caused
the desired output plan to fail. Inmanually debugging, these types of problems,
t he knowledge engineer would writ ¢ out by hand the plan t hat should be con-
structed. The knowledge engineer would then construct a set of problems, cach
of which correspOnded to a subpart of the failed com plete problem. Ior exam -
ple, if a failed problem consisted of acliicving goals A, B, and C, the knowledge
engincer might try the planner on A alon e, B alone, and C alone, to aticinpt to
isolate the bug to the portion of t he knowledge base convesponding to A, B, or
C, correspondingly.

Completion analysis tools partially aut omate t his 1 edious process of isolat-
ing the bug, by constructing subyn 01)1Cills. T'he completion analysis tools allow
the decomposition 01 operator-hased plauma ® t () construct a proof with as-
sumptions that a small number of goals or subgoals can be presumed achicvable
(typically only one or two)®. 1 3y sceing which goals, if assumable, make the

51 the completion analysis for both the reduction p lann erand the operator -hased planner
there are choice points in the scarch in ordering plans in the scarch queue. In both cases, we
use standard he uristics basc.d on the numbe s of outstanding poals aud p lea derivation steps
so far. How ever, the static analysis tecimiques would wOrk witl yany appropriate heuristic foy
ihis scarch choice.

Grppye Duinber of goals assyu nable is keptsmap] hecause allowing, the plauner {o assuine
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problem solvable, the user gains valuable informat jon about where t he bug lies
in the kn owledge hase. For exanple, if a problem consists of goals A, B, and
C, and the problem becomes solvable if 13 is assuimned achievable, the bug is
likely to be inthe portion of the knowledge hase relating to the achievement
of B. Alternatively, if the Problery s solvable when cither Bor C is assumed
achievable, t henthe bug likely lies in the int eraction of the operators achiev jng
Band C. The completion analysis tool” is used by running the modified planmae
algor ithm until cither: 1.arcsourceboundof the 11111111 )( '17 of planscXpanded
is reached; or 2. there are no more plans to expand. Thie completion analysis
algorithm for the reduction planmer is shown bClow in Figur ¢ 6

Completion Red uction]lanner (input, operational, rules)
initialize @ = {goalss input, constraints: , assumptions: 0}
I F resource hound return SOLUTIONS
191 .Sk select a blan 1 froin @
for cach plan 1 produced by reducing 17 using a taskre duc tion rule
II° the constraintsin 1 arc consistent
IF 1% contains only operation goals/activitios
THENadd 1% to SOLUTIONS
1M LSE add 1* {o Q and continue
IS1LSE discard 1
for cach plan I’ produced by presumning the current goal achieved foperational
11" 1% contaius only operation §Gals/activities
TIEN add 1“ to SOLUTIONS
EESE increment Numiber O Assumptions(1”)
110 Numiber Of Assunipt jons(1?") < honnd
THIENadd 1« 1o Q

Figure G: Completion Analysis for Reduction Rules

In the operator-hased planmer, completion analysis is perinitted by adding,
another goal achievement M iethod which €O rresponds 10 assuming that the goal
is magically achicved. The completion analysis operator planner is then run
until either 1. a resource 1)01111(1 of the mumnber of plans expanded is reached;
or 2. there arce no more plans to expanid. All solutions found are then reported
back to the user to assist in focusing on possible areas of the domain theory for
refinement. The basic completion analysis algorithim for the operator planuer is
shown below in Iigure 7. The * on Step 4 indicates the principal inodification
to the standard op crator-bésed planning algorithm made to perform operator-
based completion analysis. Themain drawback of the completion analysis tools
is that they dramatically increase the size of the scarch space. Thus, with the
completion analysis tools, we provide the user with the option of restricting the

goals dramatically imcreases the scarch space for possible plans. It eflectively adds 1 to the
branching factor of every goal achievemnent node in the 8Carch space for the plan
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Completion Operator Planner (input,initial-state, operators)
initialize Q = (goals: inpul, constraints: , assumptions: )
11"resoumce hou 11(1 exceeded
TITEN return SOLUTIONS
1CLSE sclect a plan 17 from Q
for cach Plan 17 11 aduced by achieving agoa1 using @it following methaods:
1. use existing operator in t Lie plan to acliieve the goal
2. add a new operator to the plan to achieve the goal
3.usc thie initial state toachieve the goal
4.*% if the nnba of goals alv cady assumedind © is less than the hound
ass utne the goal true using completion analysis;
the §f of asswuptions in the new plan is 1+ 4/in 17;
resolve conflicts in 1 (protections);
T 1 has 5o wnresolved conflicts and has no unachieved goals
TIHEN add 1* to SOLUTIONS
I51LSE add 1)’ to Q and continue

Figure 7: Completion Analysis for Operator Planmaer

types of goals that can be presumed troe. Cwrvently the user can restrict this
process in the {ollowing, ways:

o allow ouly top-level (problemn input) goals to be assumned;

. allow only goals appearing in a specific operat ors preconditions to be as-
sumed;

o allow goals rclating to an operator (appearing, in its precondition or oflects)
to be assumed; and

e only allow certain predicates t o 1heassuimned.

Thus far, we bave found these restrictionmethodsto be fairly eflective in focus-
ing the scarch. Note that allowing certain goals to he p resutied true corresponds
Lo cditing the problem definition (or domain theory) nuimerous tintes and re-
runming the planner. For example, allowing a single to])-level goal to be assumed
true for a problem with N goals cort esponds to editing the problem definition n
times, cach time ramoving one of the top-level goals and re-running the planmer
cachtime. Allowing a precondition of anoperator to be suspended corresponds
to running, the planucr on the original problem multiple tines, eacl 1 time with
a domain theory thiat has one of the operat or preconditions removed. Manually
performing this testing Lo isolate an arror quickly grows tiresome. Furthermore,
i f multiple goals arc allowed to he suspended, the number of edits and runs
grows combinatorially. The completionanalysis tools arc designed 10 alleviate




this tedious process and t o allow { he user to focus on repairving the domnain the-
ory. As a side effect, running the planuer only onceis also computationally more
efficient than running, the planner nltiple times. This is becanse the planmer
need explore portions Of the scarch spaceunrelatedio the suspended conditions
fewer times.

Thus, the completion analysis techmiques are generally used in the following,
manner. MV awtomatically logs any problems unsolvable by the task reduction
planner (unt educable) or operator-hased planmer (11(1 plan found). The user
then specifies that one of the top -level goals may  be suspended (ally one of
the top- level goals is a valid candidate - the planner tries caclyin turn. The
completion planner then finds a planiwhich solves all bhutone of the to])-level
goals - focusing the user onthetop -level goal which is unachievalle. The user
then determines which operator 0 1 that should he achieving the goal, and
specifies that the completion planuer may consider suspending, preconditions of
0 1. The completion gualysis planmer runs and deterinines which precondition
I’1 of 01 is preventing application of ihis operator Next, the user determines
which operator 02 should be achieving this precondition 1'1 of O1, anud the
process continues recursively until the flawed operator is found. For example, it
may be that a protection cannot be enforced, thus preventing a precondition 1°1
from being achieved. In this case, suppose another operator 02 should be able
to achieve I'1. But suspending its precondit ions does not allow the problem to
be solved. This inight hint to the k nowledge engineer that the problem is in the
protection of 11 from 02 to 01. Alternatively, it may he t hat no operat or has
an ¢ ffect that can achicve P (por-haps t he knowledge engineer forgot Lo define
the effect or operator). 017 that the ¢ flect has adifferent mu 111)(°] Of arguments,
orargumentsina different 01°(1(°17, orarguments of a different type. These types
of bugs canhe easily detected once the bug has heen isolated to the particular
operator. Another possibility is that a conditional effect that should be used
has the wrong conditional preconditions. Again, once the bug has been traced
Lo a particular operator, the debugging process is greatly simplified.

In order to further explain how the completion analysis tools are used, we
now describe a detailed example of how the completion analysi s tools are 11 sed.
The graph below in Iigure 8 illustrates this process from an actual debugging,
episode whichi o ccurred in the developyment of a portion of the ])ln;minp] knowl-
edge Dase 7 relating o o problem called relative navigat ion 8 Fach of the

following steps inthe debugging process is labeled 17 if the planmer performed

"Note {],at this js th e operator bortion of the knowledpe base relating, directly to the task
reduction rules shownn the exanple for static 1 ule analy sis.

81or the interested reade 1, navigation of theimageis the process of determining the ap-
propriate transformation matrix to map cach pixel from the 2-dimensional (line, sar nple) of
the image space to a 3-dimensional (x,y,2) of some coordinate oliject space (usually based on
the plai et ceniter of the target heing imaged). Relat ive navigat ion ¢ or responds 1o th e pro
cess when determining the absolute position of cach point is diflicult to cor n pute so that the
process focuses on determining the correc U positions of cach point relative to other points in
related images.
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the step; U if the user/knowledge engincer perforins the step; or C if the comn-
1letion anal ysis Lool performs thie Sk .

1. (1) he planmer IS unable to solve the original problem.

2. (11) Thie userinitiates the debugging process by invoking the oper ator-based cornpletion
analysis tool specifying that one top -level goal mnay be suspended.,

3. (C) Thie completion planner construets a Planachioving, all of the goals but the top level
goal of (cornpute-o1n- matrix fom-matrix ? file-Jist ? file-list).

4. (U) Thie user then determnines that the OMCOR? o perat or should have bheen able to
achicve the goal (cotn pute- oin-natrix 7om-matrix Hile -list “Hle-list). Thie nser then continues
the debuggin g process by invoking the completion analysis tool specifying that a precondition
of the OMCOR?2 operalor jnay he suspended.

5. (C) In response to the user request, the completion plown finds a plan achieving all
goals except the O MCOR2 precondition (ticpoint-file 7tp file list manmatch).

6. (n) The user then determines that the precondition (licl,oillt-file 7tp 7 file-list ina n-
match) should be achieved by the MANMATCHop erator, and invokes the operator completion
analysis tool allowing suspension of one of the preconditions of the MANMATCH oper ator.

7. (C) The completion planuer then finds a plan achieving, a1l goals but the precondition
(refined-over lap-pairs 7rop- file ?file-list) of the operatot MANMATCII.

8. (U) The user then determiues that the precondition (refined- overlap-pairs *2lo],-file ile-
list) should have heen achicved by the EDIBLS operator and invokes the operator conpletion
analysis tool allowing suspension of an 1DIBIS precondition.

9. (C) The completion planna finds a plan achicving all goals but the precondition
(crude-overlap yaiy 2cop-file 7 file-Tist ) of IDIRIS,

10. (U) The user then determines that this precondition (crude-ovetlap-pair 2(cl13-file
ile- list) shiould have been achieved by the MOS PLOT-const ruct-crude-nav- file . Phis results
in anotherinvocation or the completion analysis tool allowing suspension of  a precondition
{for MOSPT.OT-construct-crude-nav-file.

11. (C) The completion analysis tool then finds a plan achicving, all goals but the precon-
dition (latlon 7mf 7lat ?lor) for the operator MOSPLOT-consty vet-crude-nav-file.

12. (U) At this point, the user notices that the constiucted plan for achieving the goals
has as sumed the instantiated goal (latlon &middle-file ?lat Zlon). This immediately indicates
the error to thie user hecause the usar is expecting a file name as the second argument of the
latlon predicate ©

Unfortunately, we have as of yet not heen able to determine any heuristics for
controlling the use of these completion t ools t hill allows for more glohal scarch
or allows for less user interaction. However, in their current form, the cornple-
tion analysis tools have proved quite usceful in debugging t e MV radiometric
correction and color triplet reconstruction knowledge hase.

4.1 Impact of 1 debugging

In order to quantify the usefulness of the completion analysis tools, we collected
data from a 1 week phase of damain theory development for the relative navi-

9 his is beeause the latlon goal is designed to refer 1o a specific image file (e.p., 1126.1IMG).

Correspondingly, the planning operators that had been defined to acquire information such
as latlon presuined actual file names. Unfortunately, &middle-file refers to a VICAR variable
which will be bound to an actual file nae only at the thme that the VICAR script is run (i.e.
when the plan is executed). Fhus, the bug lies in the mismatch between this precondition
and the operators which can determine latlon information for a file. T'his bug was then fixed
by defining operators which could utilize the VICAR variable information al rantime and
perforin the correet steps to compute the needed latlon information.
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Figure 8 Subgoal Graph for Completion Analysis Debugging

Table 2: mpirical Iinpact of Completion Analysis T ools

Set ‘1]?01‘ Avaage ‘1<), 0l Average Overadl Average
Applicahle Tim« Not Applicable Time

Tool 7711 10 min. 4/11 41 min. 21 min,

No Tool @T‘I 43 min. /11 41w, 42 min.

gation portion of the domaintheory. 1 during, this week, we identified 22 issues
raised by a domain expert analyst which at first guess appeared to he primarily
in the decomposition rules or operators. For 11 of these 22 problems (selected
randomly) we used the debugging tools in refining the domain theory. Ior the
other 11 problems we did not use the debugging, tools. When tools were allowed,
we estimated that t hie tools wer e applicable in 7 out of the 11 problems. These
7 problems were solved n an average of 1() minutes cach. The other 4 took
onaverage 41 minutes. Thetotal 11 problems where the tools were 11 s((1 took
onaverage 21 minutes cach to correct. In the 11 problems solved wit hout use
of thetools, after fixing all 11 problems, we estimnated thatiné (ml of the 11

problems that the debugging tools would have helped. These 6 problems to ok
on average 43 minutes cach to solve. The remaining 5 problems took onaverage
40 minutes to solve. The sccond set of 11 probleins took 011 average 42 minutes

5 so9iscussion
One arca for future work is development of explanation facilities to allow the

user to introspect into the planming p rocess. Such a capability would allow the
user o ask such  questions Wisy was this operator added to the plan?” and
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“ Why is this operator ordered aft er t his operator?” | which can be answered
casily from the pla udependency struc ture. More diflicolt (but. also very use-
fll]) questions arc of the fOWhy wasn’t operator 02 used to achieve this
goal?” or " Why wasn’t, this problem classified as problem class 17?7, We are
currently investigating using completion analysis tools to atiswer this type of
question. The com pletion analysis technigues are related to theory refinement
techniques from machine learning [1 5,1 ()]. However, these techniques presume
multiple examples over which to induce ervors. Additionally, reasoning about
planuing operators requires reasoning about the specialized planning knowledge
representations and constraints. This paper has desceribed two classes of kniowl-
cdge base development tools. Static analysis tools allow for eflicient detection of
Certain classes of unachicvable goals and can quickly focus user attention on the
unachicvable goals. Static analysis techniques can also be used 1o verify that
domain coverage is achieved. Completion analysistools allow the user to quickly
focus on which goals (or subgoals) are preventing the planner from achieving
a goal sct believed achievable by the knowledge hase developer. These tools
are currently in use and we have Presented cinpirical evidence docuinenting, the
uscfulness of these tools in constructing, maintaining, and verifying, the MVDP
planning knowledge base.
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